1-cosx的a次方的等价无穷小
1-√cosx的等价无穷小:x^2/4。分析过程如下:利用cosx=1-x^2/2+o(x^2)=1-(1+cosx-1)^恒等变形=1-(1+(cosx-1)/2)+o(cosx-1)=x^2/4+o(x^2)。
求极限时,使用等价无穷小的条件:
(1)被代换的量,在取极限的时候极限值为0。
(2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
1-√cosx的等价无穷小:x^2/4。分析过程如下:利用cosx=1-x^2/2+o(x^2)=1-(1+cosx-1)^恒等变形=1-(1+(cosx-1)/2)+o(cosx-1)=x^2/4+o(x^2)。
求极限时,使用等价无穷小的条件:
(1)被代换的量,在取极限的时候极限值为0。
(2)被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。