判断四边形是矩形的条件
矩形的判定条件有三个角是直角的四边形是矩形;定理,经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形;对角线相等且互相平分的四边形是矩形;有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。
由于矩形是特殊的平行四边形,故包含平行四边形的性质;
矩形的性质
(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)具有不稳定性(易变形)。
矩形的相关公式
(1)面积:S=ab(注:a为长,b为宽)
(2)周长:C=2(a+b)(注:a为长,b为宽)
图形学
矩形必须一组对边与x轴平行,另一组对边与y轴平行。不满足此条件的几何学矩形在计算机图形学上视作一般四边形。