天气预报 > 其他 >三角形中位线定理证明方法

三角形中位线定理证明方法

更新时间: 2020-10-28 00:00:00

三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

例如证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2。

过C作AB的平行线交DE的延长线于G点。

CG∥AD。

∠A=∠ACG。

∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)。

△ADE≌△CGE(A.S.A)。

AD=CG(全等三角形对应边相等)。

D为AB中点。

AD=BD。

BD=CG。

又BD∥CG。

BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)。

DG∥BC且DG=BC。

DE=DG/2=BC/2。

三角形的中位线定理成立。

逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线

标签:三角形定理证明方法