三角形中位线定理证明方法
三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。
例如证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2。
过C作AB的平行线交DE的延长线于G点。
CG∥AD。
∠A=∠ACG。
∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)。
△ADE≌△CGE(A.S.A)。
AD=CG(全等三角形对应边相等)。
D为AB中点。
AD=BD。
BD=CG。
又BD∥CG。
BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)。
DG∥BC且DG=BC。
DE=DG/2=BC/2。
三角形的中位线定理成立。
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线