sin的n次方的积分公式
sin的n次方的积分公式是∫[(sinx)^n]dx=-{[(sinx)^(n-1)]cosx}/n+[(n-1)/n]∫[(sinx)^(n-2)]dx。
从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。
sin的n次方的积分公式是∫[(sinx)^n]dx=-{[(sinx)^(n-1)]cosx}/n+[(n-1)/n]∫[(sinx)^(n-2)]dx。
从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。