四边形的对角线相等一定是矩形吗
四边形对角线相等且平分才能充分证明此四边形是矩形,如果只是对角线相等还不能完全证明,比如等腰梯形对角线相等但却不互相平分。
矩形:在几何中,矩形的定义为四个内角相等的四边形,即是说所有内角均为直角。从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。
对角线:对角线是几何学名词,定义为连接多边形任意两个不相邻顶点的线段,或者连接多面体任意两个不在同一面上的顶点的线段。
四边形对角线相等且平分才能充分证明此四边形是矩形,如果只是对角线相等还不能完全证明,比如等腰梯形对角线相等但却不互相平分。
矩形:在几何中,矩形的定义为四个内角相等的四边形,即是说所有内角均为直角。从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。
对角线:对角线是几何学名词,定义为连接多边形任意两个不相邻顶点的线段,或者连接多面体任意两个不在同一面上的顶点的线段。