区间再现的使用方法
当三角函数掺杂在复杂的指数对数或者普通的多项式中(如x*丨sinx丨),且积分区域是含π/2、π等这样形式的时候,就适合用区间再现公式。这样积分区域不会变化,而变量代换导致的三角函数里x的替换又可通过诱导公式去掉复杂的形式。区间再现公式的精妙之处在于,可以不改变积分区域的情况下对被积函数进行改造。
这种换元法叫积分区间对调公式(或者叫积分区间再现公式),实质是对原积分变量x进行换元,即令x+t=a+b (a,b分别为原定积分的上下限),用t来取代x成为新的积分变量。
当三角函数掺杂在复杂的指数对数或者普通的多项式中(如x*丨sinx丨),且积分区域是含π/2、π等这样形式的时候,就适合用区间再现公式。这样积分区域不会变化,而变量代换导致的三角函数里x的替换又可通过诱导公式去掉复杂的形式。区间再现公式的精妙之处在于,可以不改变积分区域的情况下对被积函数进行改造。
这种换元法叫积分区间对调公式(或者叫积分区间再现公式),实质是对原积分变量x进行换元,即令x+t=a+b (a,b分别为原定积分的上下限),用t来取代x成为新的积分变量。