凯莱定理是什么要具体
Cayley定理又称凯莱定理,在群论中,以阿瑟·凯莱命名,声称所有群 G 同构于在 G 上的对称群的子群。这可以被理解为G在G的元素上的群作用的一个例子。集合 G 的置换是任何从 G 到 G 的双射函数;所有这种函数的集合形成了在函数复合下的一个群,叫做“G 上的对称群”并写为 Sym(G)。
Cayley定理又称凯莱定理,在群论中,以阿瑟·凯莱命名,声称所有群 G 同构于在 G 上的对称群的子群。这可以被理解为G在G的元素上的群作用的一个例子。集合 G 的置换是任何从 G 到 G 的双射函数;所有这种函数的集合形成了在函数复合下的一个群,叫做“G 上的对称群”并写为 Sym(G)。