补集的定义
在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合即元素属于B但不属于A。
绝对补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。
在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。
相对补集:若A和B是集合,则A在B中的相对补集是这样一个集合即元素属于B但不属于A。
绝对补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。