导数的概念及其几何意义
导数的概念是函数增量的极限,导数的几何意义是函数所有切线的斜率所构成的函数。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
导数的概念是函数增量的极限,导数的几何意义是函数所有切线的斜率所构成的函数。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。