强化学习是什么
强化学习是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。但在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,即非监督学习、监督学习、强化学习。
强化学习就是智能系统从环境到行为映射的学习,以使奖励信号函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价。
强化学习是从动物学习、参数扰动自适应控制等理论发展而来。
强化学习是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。但在传统的机器学习分类中没有提到过强化学习,而在连接主义学习中,把学习算法分为三种类型,即非监督学习、监督学习、强化学习。
强化学习就是智能系统从环境到行为映射的学习,以使奖励信号函数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价。
强化学习是从动物学习、参数扰动自适应控制等理论发展而来。