空间四边形内角和定理
空间四边形的内角和定理:空间四边形的内角和小于360度。
原因:过四边形的两个相对的顶点做对角线,得到两个三角形,因为三角形的内角和等于180度,故四边形的内角和小于360度。
四条线段首尾相接,且相对的线段所在直线异面,这样的图形叫做空间四边形。连接相邻两个顶点的线段叫做空间四边形的边。顺次连结空间四边形各边中点得到的图形是平行四边形,空间四边形的对边不同在一个平面内,空间四边形两条对角线所在直线为异面直线,若四边相等,则对角线不相交但垂直。
空间四边形的内角和定理:空间四边形的内角和小于360度。
原因:过四边形的两个相对的顶点做对角线,得到两个三角形,因为三角形的内角和等于180度,故四边形的内角和小于360度。
四条线段首尾相接,且相对的线段所在直线异面,这样的图形叫做空间四边形。连接相邻两个顶点的线段叫做空间四边形的边。顺次连结空间四边形各边中点得到的图形是平行四边形,空间四边形的对边不同在一个平面内,空间四边形两条对角线所在直线为异面直线,若四边相等,则对角线不相交但垂直。