凹凸函数的判断方法
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),则称f为I上的凸函数。若不等号严格成立,即“>”号成立,则称f(x)在I上是严格凸函数。如果>=换成
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2),则称f为I上的凸函数。若不等号严格成立,即“>”号成立,则称f(x)在I上是严格凸函数。如果>=换成