tan是奇函数还是偶函数
tan是奇函数。
证明:f(x)=tanx,f(-x)=tan(-x)=-tanx=-f(x);所以,f(-x)=-f(x),所以tanx是奇函数。
奇函数:是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
奇函数性质:
1、两个奇函数相加所得的和或相减所得的差为奇函数。
2、一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
3、两个奇函数相乘所得的积或相除所得的商为偶函数。
4、一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
5、当且仅当f(x)=0(定义域关于原点对称)时,f(x)既是奇函数又是偶函数。奇函数在对称区间上的积分为零。
偶函数:一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。
偶函数公式:
1、如果知道函数表达式,对于函数f(x)的定义域内任意一个x,都满足f(x)=f(-x),如y=x*x;
2、如果知道图像,偶函数图像关于y轴(直线x=0)对称;
3、定义域D关于原点对称是这个函数成为偶函数的必要不充分条件。